Регулируемый блок питания своими руками

Мастер, описание устройства которого в первой части, задавшись целью сделать блок питания с регулировкой, не стал усложнять себе дело и просто использовал платы, которые лежали без дела. Второй вариант предполагает использование еще более распространенного материала – к обычному блоку была добавлена регулировка, пожалуй, это очень многообещающее по простоте решение при том, что нужные характеристики не будут потеряны и реализовать задумку можно своими руками даже не самому опытному радиолюбителю. В бонус еще два варианта совсем простых схем со всеми подробными объяснениями для начинающих. Итак, на ваш выбор 4 способа.

Блок питания с регулировкой из старой платы компьютера

Расскажем, как сделать регулируемый блок питания из ненужной платы компьютера. Мастер взял плату компьютера и выпилил блок, питающий оперативку.
Так он выглядит.

Определимся, какие детали нужно взять, какие нет, чтобы отрезать то, что нужно, чтобы на плате были все компоненты блока питания. Обычно импульсный блок для подачи тока на компьютер состоит из микросхемы, шим контроллера, ключевых транзисторов, выходного дросселя и выходного конденсатора, входного конденсатора. На плате еще и зачем-то присутствует входной дроссель. Его тоже оставил. Ключевые транзисторы – может быть два, три. Есть посадочное место по 3 транзистор, но в схеме не используется.

Сама микросхема шим контроллера может выглядеть так. Вот она под лупой.

Может выглядеть как квадратик с маленькими выводами со всех сторон. Это типичный шим контроллер на плате ноутбука.


Так выглядит блок питания импульсный на видеокарте.

Точно также выглядит блок питания для процессора. Видим шим контроллер и несколько каналов питания процессора. 3 транзистора в данном случае. Дроссель и конденсатор. Это один канал.
Три транзистора, дроссель, конденсатор – второй канал. 3 канал. И еще два канала для других целей.
Вы знаете как выглядит шим-контроллер, смотрите под лупой его маркировку, ищите в интернете datasheet, скачиваете pdf файл и смотрите схему, чтобы ничего не напутать.
На схеме видим шим-контроллер, но по краям обозначены, пронумерованы выводы.

Обозначаются транзисторы. Это дроссель. Это конденсатор выходной и конденсатор входной. Входное напряжение в диапазоне от 1,5 до 19 вольт, но напряжение питание шим-контроллера должно быть от 5 вольт до 12 вольт. То есть может получиться, что потребуется отдельный источник питания для питания шим-контроллера. Вся обвязка, резисторы и конденсаторы, не пугайтесь. Это не нужно знать. Всё есть на плате, вы не собираете шим-контроллер, а используете готовый. Нужно знать только 2 резистора – они задают выходное напряжение.

Резисторный делитель. Вся его суть в том, чтобы сигнал с выхода уменьшить примерно до 1 вольта и подать на вход шим-контроллера фидбэк – обратная связь. Если вкратце, то изменяя номинал резисторов, можем регулировать выходное напряжение. В показанном случае вместо резистора фидбэк мастер поставил подстроечный резистор на 10 килоом. Этого оказалось достаточным, чтобы регулировать выходное напряжение от 1 вольта до примерно 12 вольт. К сожалению, не на всех шим-контроллерах это возможно. Например, на шим контроллерах процессоров и видеокарт, чтобы была возможность настраивать напряжение, возможность разгона, выходное напряжение сдается программно по несколькоканальной шине. Менять выходное напряжение такого шим контроллера можно разве только перемычками.

Итак, зная как выглядит шим-контроллер, элементы, которые нужны, уже можем выпиливать блок питания. Но делать это нужно аккуратно, так как вокруг шим-контроллера есть дорожки, которые могут понадобиться. Например, можно видеть – дорожка идёт от базы транзистора к шим контроллеру. Её сложно было сохранить, пришлось аккуратно выпиливать плату.

Используя тестер в режиме прозвонки и ориентируясь на схему, припаял провода. Также пользуясь тестером, нашел 6 вывод шим-контроллера и от него прозвонил резисторы обратной связи. Резистор находился рфб, его выпаял и вместо него от выхода припаял подстроечный резистор на 10 килоом, чтобы регулировать выходное напряжение, также путем про звонки выяснил, что питание шим-контроллера напрямую связано со входной линией питания. Это значит, что не получиться подавать на вход больше 12 вольт, чтобы не сжечь шим-контроллер.

Посмотрим, как блок питания выглядит в работе

Припаял штекер для входного напряжения, индикатор напряжения и выходные провода. Подключаем внешнее питание 12 вольт. Загорается индикатор. Уже был настроен на напряжение 9,2 вольта. Попробуем регулировать блок питания отверткой.


Пришло время заценить, на что способен блок питания. Взял деревянный брусок и самодельный проволочный резистор из нихромовой проволоки. Его сопротивление низкое и вместе с щупами тестера составляет 1,7 Ом. Включаем мультиметр в режим амперметра, подключаем его последовательно к резистору. Смотрите, что происходит – резистор накаляется до красна, напряжение на выходе практически не меняется, а ток составляет около 4 ампер.


Раньше мастер уже делал похожие блоки питания. Один вырезан своими руками из платы ноутбука.

Это так называемое дежурное напряжение. Два источника на 3,3 вольта и 5 вольт. Сделал ему на 3d принтере корпус. Также можете посмотреть статью, где делал похожий регулируемый блок питания, тоже вырезал из платы ноутбука. Это тоже шим контроллер питания оперативной памяти.

Как сделать регулирующий БП из обычного, от принтера

Пойдет речь о блоке питания принтера canon, струйный. Они много у кого остаются без дела. Это по сути отдельное устройство, в принтере держится на защелке.
Его характеристики: 24 вольта, 0,7 ампера.

Понадобился блок питания для самодельной дрели. Он как раз подходит по мощности. Но есть один нюанс – если его так подключить, на выходе получим всего лишь 7 вольт. Тройной выход, разъёмчик и получим всего лишь 7 вольт. Как получить 24 вольта?
Как получить 24 вольта, не разбирая блок?
Ну самый простой – замкнуть плюс со средним выходом и получим 24 вольта.
Попробуем сделать. Подключаем блок питания в сеть 220. Берем прибор и пытаемся измерить. Подсоединим и видим на выходе 7 вольт.
У него центральный разъем не задействован. Если возьмем и подсоединим к двум одновременно, напряжение видим 24 вольта. Это самый простой способ сделать так, чтобы данный блок питания не разбирая, выдавал 24 вольта.

Необходим самодельный регулятор, чтобы в некоторых пределах можно было регулировать напряжение. От 10 вольт до максимума. Это сделать легко. Что для этого нужно? Для начала вскрыть сам блок питания. Он обычно проклеен. Как вскрыть его, чтобы не повредить корпус. Не надо ничего колупать, поддевать. Берем деревяшку помассивнее либо есть киянка резиновая. Кладем на твердую поверхность и по шву лупим. Клей отходит. Потом по всем сторонам простучали хорошенько. Чудесным образом клей отходит и все раскрывается. Внутри видим блок питания.


Достанем плату. Такие бп легко переделать на нужное напряжение и можно сделать также регулируемый. С обратной стороны, если перевернем, есть регулируемый стабилитрон tl431. С другой стороны увидим средний контакт идет на базу транзистора q51.

Если подаем напряжение, то данный транзистор открывается и на резистивном делителе появляется 2,5 вольта, которые нужно для работы стабилитрона. И на выходе появляется 24 вольта. Это самый простой вариант. Как его завести можно еще – это выбросить транзистор q51 и поставить перемычку вместо резистора r 57 и всё. Когда будем включать, всегда на выходе непрерывно 24 вольта.

Как сделать регулировку?

Можно изменить напряжение, сделать с него 12 вольт. Но в частности мастеру, это не нужно. Нужно сделать регулируемый. Как сделать? Данный транзистор выбрасываем и вместо резистор 57 на 38 килоома поставим регулируемый. Есть старый советский на 3,3 килоома. Можно поставить от 4,7 до 10, что есть. От данного резистора зависить только минимальное напряжение, до которого он сможет опускать его. 3,3 -сильно низко и не нужно. Двигатели планируется поставить на 24 вольта. И как раз от 10 вольт до 24 – нормально. Кому нужно другое напряжение, можно большого сопротивления подстроечный резистор.
Приступим, будем выпаивать. Берём паяльник, фен. Выпаял транзистор и резистор.

Подпаял переменный резистор и попробуем включить. Подал 220 вольт, видим 7 вольт на нашем приборе и начинаем вращать переменный резистор. Напряжение поднялось до 24 вольт и плавно-плавно вращаем, оно падает – 17-15-14 то есть снижается до 7 вольт. В частности установлено на 3,3 ком. И наша переделка оказалась вполне успешной. То есть для целей от 7 до 24 вольт вполне приемлемая регулировка напряжения.


Такой вариант получился. Поставил переменный резистор. Ручку и получился регулируемый блок питания – вполне удобный.

Такие блоки питания найти в Китае просто. Наткнулся на интересный магазин, который продает б/у блоки питания от разных принтеров, ноутбуков и нетбуков. Они разбирают и продают сами платы, полностью исправные на разные напряжения и токи. Самый большой плюс – это то, что они разбирают фирменную аппаратуру и все блоки питания качественные, с хорошими деталями, во всех есть фильтры.
Фотографии – разные блоки питания, стоят копейки, практически халява.

Простой блок с регулировкой

Простой вариант самодельного устройства для питания приборов с регулировкой. Схема популярная, она распространена в Интернете и показала свою эффективность. Но есть и ограничения, которые показаны на ролике вместе со всеми инструкциями по изготовлению регулированного блока питания.

Самодельный регулированный блок на одном транзисторе

Какой можно сделать самому самый простой регулированный блок питания? Это получится сделать на микросхеме lm317. Она уже сама с собой представляет почти блок питания. На ней можно изготовить как регулируемый по напряжению блок питания, так и потоку. В этом видео уроке показано устройство с регулировкой напряжения. Мастер нашёл несложную схему. Входное напряжение максимальное 40 вольт. Выходное от 1,2 до 37 вольта. Максимальный выходной ток 1,5 ампер.

Без теплоотвода, без радиатора максимальная мощность может быть всего 1 ватт. А с радиатором 10 ватт. Список радиодеталей.

Приступаем к сборке

Подключим на выход устройства электронную нагрузку. Посмотрим, насколько хорошо держит ток. Выставляем на минимум. 7,7 вольта, 30 миллиампер.

Всё регулируется. Выставим 3 вольта и добавим ток. На блоке питания выставим ограничения только побольше. Переводим тумблер в верхнее положение. Сейчас 0,5 ампера. Микросхема начал разогреваться. Без теплоотвода делать нечего. Нашёл какую-то пластину, ненадолго, но хватит. Попробуем еще раз. Есть просадка. Но блок работает. Регулировка напряжения идёт. Можем вставить этой схеме зачёт.

Видео Radioblogful. Видеоблог паяльщика.

Регулируемый источник напряжения от 5 до 12 вольт

Продолжая наше руководство по преобразованию блока питания ATX в настольный источник питания, одним очень хорошим дополнением к этому является стабилизатор положительного напряжения LM317T.

LM317T – это регулируемый 3-контактный положительный стабилизатор напряжения, способный подавать различные выходы постоянного напряжения, отличные от источника постоянного напряжения +5 или +12 В, или в качестве переменного выходного напряжения от нескольких вольт до некоторого максимального значения, все с токи около 1,5 ампер.

С помощью небольшого количества дополнительных схем, добавленных к выходу блока питания, мы можем получить настольный источник питания, способный работать в диапазоне фиксированных или переменных напряжений, как положительных, так и отрицательных по своей природе. На самом деле это гораздо проще, чем вы думаете, поскольку трансформатор, выпрямление и сглаживание уже были выполнены БП заранее, и все, что нам нужно сделать, это подключить нашу дополнительную цепь к выходу желтого провода +12 Вольт. Но, во-первых, давайте рассмотрим фиксированное выходное напряжение.

Фиксированный источник питания 9В

В стандартном корпусе TO-220 имеется большое разнообразие трехполюсных регуляторов напряжения, при этом наиболее популярным фиксированным стабилизатором напряжения являются положительные регуляторы серии 78xx, которые варьируются от очень распространенного фиксированного стабилизатора напряжения 7805 +5 В до 7824, + 24V фиксированный регулятор напряжения. Существует также серия фиксированных отрицательных регуляторов напряжения серии 79хх, которые создают дополнительное отрицательное напряжение от -5 до -24 вольт, но в этом уроке мы будем использовать только положительные типы 78хх .

Фиксированный 3-контактный регулятор полезен в приложениях, где не требуется регулируемый выход, что делает выходной источник питания простым, но очень гибким, поскольку выходное напряжение зависит только от выбранного регулятора. Их называют 3-контактными регуляторами напряжения, потому что они имеют только три клеммы для подключения, и это соответственно Вход , Общий и Выход .

Входным напряжением для регулятора будет желтый провод + 12 В от блока питания (или отдельного источника питания трансформатора), который подключается между входной и общей клеммами. Стабилизированный +9 вольт берется через выход и общий, как показано.

Схема регулятора напряжения

Итак, предположим, что мы хотим получить выходное напряжение +9 В от нашего настольного блока питания, тогда все, что нам нужно сделать, это подключить регулятор напряжения + 9 В к желтому проводу + 12 В. Поскольку блок питания уже выполнил выпрямление и сглаживание до выхода + 12 В, требуются только дополнительные компоненты: конденсатор на входе и другой на выходе.

Эти дополнительные конденсаторы способствуют стабильности регулятора и могут находиться в диапазоне от 100 до 330 нФ. Дополнительный выходной конденсатор емкостью 100 мкФ помогает сгладить характерные пульсации, обеспечивая хороший переходный процесс. Этот конденсатор большой величины, размещенный на выходе цепи источника питания, обычно называют «сглаживающим конденсатором».

Эти регуляторы серии 78xx выдают максимальный выходной ток около 1,5 А при фиксированных стабилизированных напряжениях 5, 6, 8, 9, 12, 15, 18 и 24 В соответственно. Но что, если мы хотим, чтобы выходное напряжение составляло + 9 В, но имел только регулятор 7805, + 5 В ?. Выход + 5 В 7805 относится к клемме «земля, Gnd» или «0 В».

Если бы мы увеличили это напряжение на контакте 2 с 4 В до 4 В, выход также увеличился бы еще на 4 В при условии достаточного входного напряжения. Затем, поместив небольшой 4-вольтный (ближайшее предпочтительное значение 4,3 В) диод Зенера между контактом 2 регулятора и массой, мы можем заставить 7805 5 В стабилизатор генерировать выходное напряжение +9 В, как показано на рисунке.

Увеличение выходного напряжения

Итак, как это работает. Стабилитрон 4,3 В требует обратного тока смещения около 5 мА для поддержания выхода с регулятором, потребляющим около 0,5 мА. Этот полный ток 5,5 мА подается через резистор «R1» с выходного контакта 3.

Читать также:  Яйцо из ниток

Таким образом, значение резистора, необходимого для регулятора 7805, будет R = 5 В / 5,5 мА = 910 Ом . Диод обратной связи D1, подключенный через входные и выходные клеммы, предназначен для защиты и предотвращает обратное смещение регулятора, когда входное напряжение питания выключено, а выходное питание остается включенным или активным в течение короткого периода времени из-за большой индуктивности. нагрузка, такая как соленоид или двигатель.

Затем мы можем использовать 3-контактные регуляторы напряжения и подходящий стабилитрон для получения различных фиксированных выходных напряжений от нашего предыдущего источника питания в диапазоне от + 5В до + 12В. Но мы можем улучшить эту конструкцию, заменив стабилизатор постоянного напряжения на регулятор переменного напряжения, такой как LM317T .

Источник переменного напряжения

LM317T – это полностью регулируемый 3-контактный положительный стабилизатор напряжения, способный подавать на 1,5 А выходное напряжение в диапазоне от 1,25 В до чуть более 30 Вольт. Используя соотношение двух сопротивлений, одно из которых является фиксированным значением, а другое – переменным (или оба фиксированным), мы можем установить выходное напряжение на желаемом уровне с соответствующим входным напряжением в диапазоне от 3 до 40 вольт.

Регулятор переменного напряжения LM317T также имеет встроенные функции ограничения тока и термического отключения, что делает его устойчивым к коротким замыканиям и идеально подходит для любого низковольтного или домашнего настольного источника питания.

Выходное напряжение LM317T определяется соотношением двух резисторов обратной связи R1 и R2, которые образуют сеть делителей потенциала на выходной клемме, как показано ниже.

LM317T Регулятор переменного напряжения

Напряжение на резисторе R1 обратной связи является постоянным опорным напряжением 1,25 В, V ref, создаваемым между клеммой «выход» и «регулировка». Ток регулировочной клеммы является постоянным током 100 мкА. Так как опорное напряжение через резистор R1 является постоянным, постоянным током я буду течь через другой резистор R2 , в результате чего выходного напряжения:

Затем любой ток, протекающий через резистор R1, также протекает через резистор R2 (игнорируя очень маленький ток на регулировочной клемме), причем сумма падений напряжения на R1 и R2 равна выходному напряжению Vout . Очевидно, что входное напряжение Vin должно быть как минимум на 2,5 В больше, чем требуемое выходное напряжение для питания регулятора.

Кроме того, LM317T имеет очень хорошее регулирование нагрузки, при условии, что минимальный ток нагрузки превышает 10 мА. Таким образом , чтобы поддерживать постоянное опорное напряжение 1.25V, минимальное значение резистора обратной связи R1 должно быть 1.25V / 10mA = 120 Ом , и это значение может варьироваться от 120 Ом до 1000 Ом с типичными значениями R 1 является приблизительно 220?, чтобы 240? лет для хорошей стабильности.

Если мы знаем значение требуемого выходного напряжения, Vout и резистор обратной связи R1 , скажем, 240 Ом, то мы можем рассчитать значение резистора R2 из вышеприведенного уравнения. Например, наше исходное выходное напряжение 9 В даст резистивное значение для R2 :

R1. ((Vout / 1,25) -1) = 240. ((9 / 1,25) -1) = 1 488 Ом

или 1500 Ом (1 кОм) до ближайшего предпочтительного значения.

Конечно, на практике резисторы R1 и R2 обычно заменяют потенциометром, чтобы генерировать источник переменного напряжения, или несколькими переключенными предварительно установленными сопротивлениями, если требуется несколько фиксированных выходных напряжений.

Но для того, чтобы уменьшить математические вычисления, необходимые для расчета значения резистора R2, каждый раз, когда нам нужно определенное напряжение, мы можем использовать стандартные таблицы сопротивлений, как показано ниже, которые дают нам выходное напряжение регуляторов для различных соотношений резисторов R1 и R2 с использованием значений сопротивления E24 ,

Соотношение сопротивлений R1 к R2

Значение R2 Значение резистора R1
150 180 220 240 270 330 370 390 470
100 2,08 1,94 1,82 1,77 1,71 1,63 1,59 1,57 1,52
120 2,25 2,08 1,93 1,88 1,81 1,70 1,66 1,63 1,57
150 2,50 2,29 2,10 2,03 1,94 1,82 1,76 1,73 1,65
180 2,75 2,50 2,27 2,19 2,08 1,93 1,86 1,83 1,73
220 3,08 2,78 2,50 2,40 2,27 2,08 1,99 1,96 1,84
240 3,25 2,92 2,61 2,50 2,36 2,16 2,06 2,02 1,89
270 3,50 3,13 2,78 2,66 2,50 2,27 2,16 2,12 1,97
330 4,00 3,54 3,13 2,97 2,78 2,50 2,36 2,31 2,13
370 4,33 3,82 3,35 3,18 2,96 2,65 2,50 2,44 2,23
390 4,50 3,96 3,47 3,28 3,06 2,73 2,57 2,50 2,29
470 5,17 4,51 3,92 3,70 3,43 3,03 2,84 2,76 2,50
560 5,92 5,14 4,43 4,17 3,84 3,37 3,14 3,04 2,74
680 6,92 5,97 5,11 4,79 4,40 3,83 3,55 3,43 3,06
820 8,08 6,94 5,91 5,52 5,05 4,36 4,02 3,88 3,43
1000 9,58 8,19 6,93 6,46 5,88 5,04 4,63 4,46 3,91
1200 11,25 9,58 8,07 7,50 6,81 5,80 5,30 5,10 4,44
1500 13,75 11,67 9,77 9,06 8,19 6,93 6,32 6,06 5,24

Изменяя резистор R2 для потенциометра на 2 кОм, мы можем контролировать диапазон выходного напряжения нашего настольного источника питания от примерно 1,25 вольт до максимального выходного напряжения 10,75 (12-1,25) вольт. Тогда наша окончательная измененная схема переменного электропитания показана ниже.

Цепь питания переменного напряжения

Мы можем немного улучшить нашу базовую схему регулятора напряжения, подключив амперметр и вольтметр к выходным клеммам. Эти приборы будут визуально отображать ток и напряжение на выходе регулятора переменного напряжения. При желании в конструкцию также может быть включен быстродействующий предохранитель для обеспечения дополнительной защиты от короткого замыкания, как показано на рисунке.

Недостатки LM317T

Одним из основных недостатков использования LM317T в качестве части цепи питания переменного напряжения для регулирования напряжения является то, что до 2,5 вольт падает или теряется в виде тепла через регулятор. Так, например, если требуемое выходное напряжение должно быть +9 вольт, то входное напряжение должно быть целых 12 вольт или более, если выходное напряжение должно оставаться стабильным в условиях максимальной нагрузки. Это падение напряжения на регуляторе называется «выпадением». Также из-за этого падения напряжения требуется некоторая форма радиатора, чтобы поддерживать регулятор в холодном состоянии.

К счастью, доступны регуляторы переменного напряжения с низким падением напряжения, такие как регулятор низкого напряжения с низким падением напряжения National Semiconductor «LM2941T», который имеет низкое напряжение отключения всего 0,9 В при максимальной нагрузке. Это низкое падение напряжения обходится дорого, так как это устройство способно выдавать только 1,0 ампер с выходом переменного напряжения от 5 до 20 вольт. Однако мы можем использовать это устройство для получения выходного напряжения около 11,1 В, чуть ниже входного напряжения.

Таким образом, чтобы подвести итог, наш настольный источник питания, который мы сделали из старого блока питания ПК в предыдущем учебном пособии, может быть преобразован для обеспечения источника переменного напряжения с помощью LM317T для регулирования напряжения. Подключив вход этого устройства через желтый выходной провод + 12 В блока питания, мы можем иметь фиксированное напряжение + 5 В, + 12 В и переменное выходное напряжение в диапазоне от 2 до 10 вольт при максимальном выходном токе 1,5 А.

Один комментарий

Приложение Smart включает настраиваемые параметры управления, автоматическое включение / выключение и функцию интеллектуального тайм-аута, которая позволяет установить задержку перед тем, как приложение Smart снова включится через определенное время (через 30 с, 1 час или 2 часа).

При занятиях каким-либо делом регулярно, люди стремятся облегчить себе труд, путем создания различных приспособлений и устройств. Это в полной мере относится и к радиоделу. При сборке электронных устройств одним из важных вопросов, остается вопрос питания. Поэтому, одно из первых устройств, которое часто собирает начинающий радиолюбитель, это блок питания с регулировкой напряжения.

Регулируемый блок питания своими руками

Важными характеристиками блока питания, являются его мощность, стабилизация напряжения на выходе, отсутствие пульсаций, что может проявиться, например, при сборке и запитывании усилителя, от этого блока питания в виде фона или гула. И наконец, нам важно, чтобы блок питания был универсальным, чтобы его можно было применить для питания множества устройств. А для этого необходимо, чтобы он мог выдавать различное напряжение на выходе.

Регулируемый блок питания своими руками

Частичным решением проблемы, может стать китайский адаптер с переключением напряжения на выходе. Но такой блок питания не имеет возможности плавной регулировки и в нем отсутствует стабилизация напряжения.

Иными словами напряжение на его выходе “скачет” в зависимости от величины питающего напряжения 220 вольт, которое часто проседает по вечерам, особенно если вы живете в частном доме. Также напряжение на выходе блока питания (БП), может уменьшиться при подключении более мощной нагрузки.

Всех этих недостатков, лишен предлагаемый в этой статье блок питания, со стабилизацией и регулировкой напряжения на выходе. Вращением ручки переменного резистора мы можем выставить любое напряжение в пределах от 0 и до 10.3 вольт, с возможностью плавной регулировки.

Напряжение на выходе блока питания, мы выставляем по показаниям мультиметра в режиме вольтметра, постоянный ток (DCV).

Регулируемый блок питания своими руками

Это может пригодиться не раз, например, при проверке светодиодов, которые, как известно не любят, когда на них подают завышенное, по сравнению с номинальным напряжение. От этого их срок службы может резко сократиться, а в особо тяжелых случаях светодиод может сразу же сгореть. Ниже приведена схема этого блока питания:

Регулируемый блок питания своими руками

Схема данного РБП является стандартной и не претерпела существенных изменений с 70-х годов прошлого века. Первые варианты схем были с применением германиевых транзисторов, более поздние варианты были с применением современной элементной базы. Данный блок питания способен выдавать мощность до 800 – 900 миллиампер, при наличии трансформатора обеспечивающего нужную мощность.

Регулируемый блок питания своими руками

Ограничение в схеме по применяемому диодному мосту, который допускает токи максимум до 1 ампера.

Если потребуется увеличить мощность данного блока питания, нужно взять боле мощный трансформатор, диодный мост и увеличить площадь радиатора, либо если размеры корпуса не позволяют это сделать, можно применить активное охлаждение (кулер). Ниже приведен на рисунке список деталей необходимых для сборки:

Регулируемый блок питания своими руками

В данном блоке питания применен отечественный мощный транзистор КТ805АМ. На фото ниже можно ознакомиться с его внешним видом. На соседнем рисунке приведена его цоколевка:

Регулируемый блок питания своими руками

Данный транзистор необходимо будет прикрепить на радиатор.

В случае крепления радиатора к металлическому корпусу блока питания, например как это сделано у меня, нужно будет поставить слюдяную прокладку между радиатором и металлической пластиной транзистора, к которой должен прилегать радиатор.

Для улучшения теплоотдачи от транзистора к радиатору, нужно применить термопасту. Подойдет в принципе любая, применяемая для нанесения на процессор ПК, например та же КПТ–8.

Регулируемый блок питания своими руками

Трансформатор должен выдавать на вторичной обмотке напряжение 13 вольт, но в принципе допустимо напряжение в пределах 12-14 вольт.

В блоке питания установлен фильтрующий электролитический конденсатор, ёмкостью 2200 мкф, (можно больше, меньше нежелательно), на напряжение 25 вольт.

Можно взять конденсатор, рассчитанный на большее напряжение, но следует помнить, что у таких конденсаторов обычно и размеры больше. На рисунке ниже приведена печатная плата для программы sprint-layout, которую можно скачать в общем архиве, прикрепленном архиве.

Регулируемый блок питания своими руками

Я собрал блок питания не совсем по этой плате, так как у меня трансформатор с диодным мостом и фильтрующим конденсатором шли на отдельной плате, но сути это не меняет.

Регулируемый блок питания своими руками

Переменный резистор и мощный транзистор, в моем варианте подключены навесным монтажом, на проводках. На плате обозначены контакты переменного резистора R2, R2.1 – R2.3, R2.1 это левый контакт переменного резистора, остальные отсчитываются от него.

Если все-таки при подключении были спутаны левый и правый контакты потенциометра, и регулировка осуществляется не слева – минимум, направо — максимум, нужно поменять местами провода, идущие к крайним выводам переменного резистора. В схеме предусмотрена индикация включения на светодиоде.

Включение — отключение осуществляется тумблером, путем коммутации питания 220 вольт, подводимого к первичной обмотке трансформатора. Так выглядел блок питания на этапе сборки:

Питание подается на блок питания через родной разъем блока питания АТХ компьютера, с помощью стандартного отсоединяемого кабеля. Такое решение позволяет избежать путаницы проводов, которая часто возникает на столе у радиолюбителя.

Напряжение на выходе блока питания снимается с лабораторных зажимов, под которые можно зажать любой провод. Также в эти зажимы, можно подключить, воткнув сверху, стандартные щупы от мультиметра с крокодилами на концах, для более удобной подачи напряжения на собранную схему.

Хотя при желании сэкономить, можно ограничиться простыми проводками на концах с крокодилами, зажимаемыми с помощью лабораторных зажимов.

В случае использования металлического корпуса, наденьте кембрик подходящего размера на винт крепления зажима, во избежание замыкания зажима на корпус.

Подобный блок питания трудится у меня уже не меньше 6 лет, и доказал оправданность его сборки, и удобство применения в повседневной практике радиолюбителя. Всем удачной сборки! Специально для сайта «Электронные схемы» AKV.

Блок питания с регулировкой напряжения и тока

Приветствую всех, особенно начинающих радиолюбителей, поскольку именно они очень часто сталкиваются с проблемой поиска источников питания для своих самоделок и поэтому в ходе этой статьи будет рассмотрен вариант постройки простейшего лабораторного блока питания с возможностью ограничения тока.

Регулируемый блок питания своими рукамиНаш блок питания может обеспечивать на выходе стабилизированное напряжения от ноля до пятнадцати вольт и ток до 1.5 Ампер, эти параметры можно изменять и походу поясню, как это сделать.Регулируемый блок питания своими рукамиВ проекте специально использованы наиболее доступные компоненты, чтобы ни у кого не возникло трудности с их поиском, а теперь давайте рассмотрим схему и поймём принцип её работы.

Схема состоит из трех основных частейРегулируемый блок питания своими рукамиСетевой понижающий трансформатор (красным обозначен), он обеспечивает нужные для наших целей выходные параметры, а также гальваническую развязку. В моем варианте был использован трансформатор от блока питания старого кассетного магнитофона, Регулируемый блок питания своими рукамиподойдет и любой другой, основные параметры блока питания будут зависеть в первую очередь от трансформатора, притом нужно учитывать один момент — максимальное выходное напряжение лабораторного блока питания будет на несколько вольт меньше, чем напряжение на выпрямителе. Регулируемый блок питания своими рукамиТрансформатор подбирается с нужным током, в моем случае имеются две обмотки по 20 вольт, ток каждой из них составляет около 0,7 Ампер, обмотки подключены параллельно, то есть общий ток около полутора ампер. Вторая часть из себя представляет выпрямитель, для выпрямления переменного напряжения в постоянку и конденсатор, для сглаживания напряжения после выпрямителя и фильтрации помех.

Читать также:  Как сделать пологи в баню своими руками – советы и инструкция от мастера

И наконец третий узел — это плата самого стабилизатора, давайте её рассмотрим поподробнее…

Регулируемый блок питания своими руками

Уже постоянное напряжение поступает на плату стабилизатора, где стабилизируется до некоторого уровня. Режим стабилизации будет зависеть от стабилитрона, в нашем случае он на 15 Вольт, именно он задает максимальное выходное напряжение блока питания. Беда в том, что ток у таких стабилитронов не велик, поэтому его нужно усилить с помощью простого каскада усиления по току, построенного на транзисторах VТ 1 и VТ 2, транзисторы подключены таким образом, чтобы обеспечить максимально большое усиление, то есть по сути это аналог составного транзистора.

Регулируемый блок питания своими руками

Регулируемый блок питания своими рукамиРегулятор напряжения в лице переменного резистора R1, выполняет функцию простого делителя напряжения и может быть рассмотрен, как 2 последовательно соединенных резистора с отводом от места их соединения.Регулируемый блок питания своими рукамиИзменяя сопротивление каждого из них, мы можем регулировать напряжение. Это напряжение усиливается ранее указанным каскадом.

Регулируемый блок питания своими руками

Второй переменный резистор позволит ограничивать выходной ток. Если такая функция не нужна, то схема будет выглядеть следующим образом.

Теперь подробнее о компонентах, большую их часть, а если точнее все компоненты можно найти в старой аппаратуре, например в телевизорах, усилителях, приемниках, магнитолах и прочей технике.

Также возможно использовать импортные аналоги, которые имеют одинаковое расположение выводов. В архиве сможете найти некоторые варианты замены транзисторов, как на советские, так и на импортные.

Можно использовать готовые мосты, которые можно найти в компьютерных блоках питания или же собрать мост из любых четырех аналогичных диодов с током от двух ампер.

Для увеличения выходного напряжения блока питания сначала нужно найти соответствующий трансформатор, затем заменить стабилитроны на более высоковольтные, скажем на 18 или 24 вольта, будет зависеть от нужного вам выходного напряжения.

Резистор ограничивает ток через стабилитрон, расчет производится исходя из напряжения выпрямителя. Рассчитываю так, чтобы ток через стабилитрон не превышал значение 20-25 миллиампер, в случае стабилитрона на пол ватта и 40-45 миллиампер в случае если стабилитрон одноваттный.

Если под рукой не оказалось нужного стабилитрона, то можно использовать несколько последовательно соединенных с меньшим напряжением, в итоге сумма их напряжения будет равняться конечному напряжению стабилизации. Схема стабилизатора работает в линейном режиме, поэтому силовой транзистор VT 2 нуждается в радиаторе.

  • А теперь давайте проверим конструкцию в работе
  • и как видим напряжения плавно регулируется от нуля до пятнадцати вольт
  • Теперь проверим функцию ограничения тока, обратите внимание без выходной нагрузки вращая регулятор тока, напряжение у нас не будет меняться, что свидетельствует о корректной работе функции ограничения.
  • Выходной ток также регулируется достаточно плавно, минимальная граница 180 миллиампер.

Максимальный выходной ток в моём случае, составляет около полутора ампер, этого вполне достаточно для средних нужд большинства радиолюбителей.Несмотря на простоту конструкции, при токах около одного Ампера, наблюдаем просадку выходного напряжения меньше 200 милливольт, это очень хороший показатель для стабилизаторов такого класса.

  1. Блок питания может переносить короткие замыкания с продолжительностью не более 5 секунд, в этом режиме ток ограничивается в районе одного — семи Ампер.
  2. Монтаж при желании можно сделать навесным,но более красиво смотрится конструкция на печатной плате, тем более, что я ее для вас нарисовал,а файл платы также можете скачать с общим архивом проекта.
  3. В качестве индикаторов советую использовать стрелочные приборы, чтобы не путаться с подключением, хотя можно и цифровые.
  4. По мне, это довольно годный вариант в качестве первого блока питания, так что смело собирайте.
  5. Архив к статье: скачать… Автор, АКА КАСЬЯН

Блок питания своими руками: как сделать универсальный источник питания

Блок питания является неотъемлемым требованием любой техники. Благодаря этому устройству удается регулировать уровень напряжения, тем самым предотвращая преждевременную поломку электрической конструкции.

Регулируемый блок питания своими руками

Сегодня собрать регулируемый блок питания своими руками достаточно просто. В интернете представлено множество схем, которые помогают облегчить поставленную задачу даже для новичков радиолюбителей. Процесс изготовления этой конструкции довольно увлекательное и интересное занятие.

Регулируемый блок питания своими руками

Перед тем как приступить к рабочему процессу, необходимо подобрать простую схему для изготовления блока питания. Чем легче чертеж, тем быстрее удастся собрать установку. В специализированных магазинах представлен широкий ряд радио и электрических деталей для данной конструкции.

Регулируемый блок питания своими руками Регулируемый блок питания своими руками Регулируемый блок питания своими руками

Разновидности и типы блоков питания

Перед тем как приступить к сборке устройства, необходимо ознакомиться с видами и типами блоков питания. Каждая модель имеет свои характерные особенности.

  • стабилизированные типы. Они отвечают за бесперебойную работу электрического устройства,
  • бесперебойные виды. Они позволяют работать прибору даже при отключении от электрической цепи.

Классификация по принципу работы

По принципу работы они классифицируются на следующие типы. К ним относят:

Импульсный. Он представляет собой инверторную систему, в которой происходит преобразование переменного тока в постоянное высокочастотное напряжение.

Для того чтобы сделать импульсный блок питания своими руками необходимо приобрести специальную гальваническую развязку, которая будет передавать преобразованную мощность к трансформаторной установке.

Трансформаторный. Он состоит из понижающего трансформатора и специального выпрямителя. Он в дальнейшем преобразовывает переменную мощность в постоянную. Здесь дополнительно устанавливают фильтр-конденсатор. Он позволяет сгладить чрезмерную пульсацию и колебания в процессе работы устройства.

Мастер-класс по изготовлению регулируемого блока питания

Как сделать подобное устройство в домашних условиях? Подробная инструкция как сделать блок питания своими руками поможет справиться с поставленной задачей. Первым делом необходимо иметь четкое представление, для каких целей будет собрано это устройство.

Главными принципами работы сооружения является подача максимального тока, который в дальнейшем будет направлен в сторону нагрузки. Помимо этого он будет обеспечивать выходное напряжение. Благодаря этому электрический прибор может нормально функционировать.

Сделать мощный блок питания своими руками достаточно просто. Здесь устанавливают специальный ограничитель выходного напряжения, который позволяет регулировать процесс подачи тока при помощи рукоятки.

Например, устройство на выходе дает от 3 до 15 Вт, а прибор требует 5 Вт. Для этого определенным положением регулятора меняем диапазон преобразованной мощности.

Из чего можно сделать блок питания?

  • трансформатор,
  • диодный мост,
  • микросхема,
  • конденсаторный фильтр,
  • дросселя,
  • блоки защиты,
  • стабилизатор напряжения.

Трансформатор может иметь мощность в пределах 10 Вт. Как правило, его обмотка способна выдержать напряжение от 220 Вт до 250 вт. Вторичная обмотка проводит от 20 до 50 Вт.

Микросхема выпускается под определенной маркировкой (PDIP – 8). Здесь можно делать неограниченное количество проводящих электрических дорожек.

Диодный мост делают из четырех диодов размером 0,2 х 0,5 мм. Изделия серии SOIC значительно уменьшают перепады электрического напряжения.

Блоки защиты будут выполнены из двух предохранителей марки FU2. При срабатывании данных изделий вырабатывается ток мощностью 0,16А. Дроссели L1 и L2 можно сделать самостоятельно. Для этого понадобятся два элемента из магнитного феррита. Их размер должен быть К 17,5 х 8,3 х 6 мм.

Подсоединение всех элементов осуществляются по определенной схеме, которая представлена ниже. Здесь каждая деталь обозначена соответствующим обозначением. На фото самодельного блока питания изображено готовое устройство.

Фото блоков питания своими руками

Самодельный регулируемый блок питания от 0 до 14 Вольт

Здравствуйте уважаемые читатели сайта sesaga.ru.

У каждого радиолюбителя, в его домашней лаборатории, обязательно должен быть регулируемый блок питания, позволяющий выдавать постоянное напряжение от 0 до 14 Вольт при токе нагрузки до 500mA.

Причем такой блок питания должен обеспечивать защиту от короткого замыкания на выходе, чтобы не «сжечь» проверяемую или ремонтируемую конструкцию, и не выйти из строя самому.

Эта статья, в первую очередь, рассчитана на начинающих радиолюбителей, а идею написания этой статьи подсказал Кирилл Г. За что ему отдельное спасибо.

Предлагаю Вашему вниманию схему простого регулируемого блока питания, который был собран мной еще в 80-е годы (в то время, я учился в 8 классе), а схема была взята из приложения к журналу «Юный Техник» №10 за 1985 год. Схема немного отличается от оригинала изменением некоторых германиевых деталей на кремниевые.

Как видите, схема простая и не содержит дорогих деталей. Рассмотрим ее работу.

1. Принципиальная схема блока питания

Включается блок питания в розетку при помощи двухполюсной вилки ХР1. При включении выключателя SA1 напряжение 220В подается на первичную обмотку (I) понижающего трансформатора Т1.

Трансформатор Т1 понижает сетевое напряжение до 1417 Вольт.

Это напряжение, снимаемое со вторичной обмотки (II) трансформатора, выпрямляется диодами VD1VD4, включенными по мостовой схеме, и сглаживается фильтрующим конденсатором С1. Если не будет конденсатора, то при питании приемника или усилителя в динамиках будет слышен фон переменного тока.

Диоды VD1VD4 и конденсатор С1 образуют выпрямитель, с выхода которого постоянное напряжение поступает на вход стабилизатора напряжения, состоящего из нескольких цепей:

1. R1, VD5, VT1,
2. R2, VD6, R3,
3. VT2, VT3, R4.

Резистор R2 и стабилитрон VD6 образуют параметрический стабилизатор и стабилизируют напряжение на переменном резисторе R3, который включен параллельно стабилитрону. С помощью этого резистора устанавливают напряжение на выходе блока питания.

На переменном резисторе R3 поддерживается постоянное напряжение, равное напряжению стабилизации Uст данного стабилитрона.

Когда движок переменного резистора находится в крайнем нижнем (по схеме) положении, транзистор VT2 закрыт, так как напряжение на его базе (относительно эмиттера) равно нулю, соответственно, и мощный транзистор VT3 тоже закрыт.

При закрытом транзисторе VT3 сопротивление его перехода коллектор-эмиттер достигает нескольких десятков мегаом, и практически все напряжение выпрямителя падает на этом переходе. Поэтому на выходе блока питания (зажимы ХТ1 и ХТ2) напряжения не будет.

Когда же транзистор VT3 открыт, и сопротивление перехода коллектор-эмиттер составляет всего несколько Ом, то практически все напряжение выпрямителя поступает на выход блока питания.

Так вот. По мере перемещения движка переменного резистора вверх, на базу транзистора VT2 будет поступать отпирающее отрицательное напряжение, и в его эмиттерной цепи (БЭ) потечет ток. Одновременно, напряжение с его нагрузочного резистора R4 подается непосредственно на базу мощного транзистора VT3, и на выходе блока питания появится напряжение.

Чем больше отрицательное отпирающее напряжение на базе транзистора VT2, тем больше открываются оба транзистора, тем большее напряжение на выходе блока питания.

Наибольшее напряжение на выходе блока питания будет почти равно напряжению стабилизации Uст стабилитрона VD6.

Резистор R5 имитирует нагрузку блока питания, когда к зажимам ХТ1 и ХТ2 ничего не подключено. Для контроля выходного напряжения предусмотрен вольтметр, составленный из миллиамперметра и добавочного резистора R6.

На транзисторе VT1, диоде VD5 и резисторе R1 собран узел защиты от короткого замыкания между гнездами ХТ1 и ХТ2.

Резистор R1 и прямое сопротивление диода VD5 образуют делитель напряжения, к которому своей базой подключен транзистор VT1.

В рабочем состоянии транзистор VT1 закрыт положительным (относительно эмиттера) напряжением смещения на его базе.

При коротком замыкании на выходе блока питания эмиттер транзистора VT1 окажется соединенным с анодом диода VD5, и на его базе (относительно эмиттера) появится отрицательное напряжение смещения (падение напряжения на диоде VD5).

Транзистор VT1 откроется, и участком коллектор-эмиттер зашунтирует стабилитрон VD6. В результате этого транзисторы VT2 и VT3 окажутся закрытыми.

Сопротивление участка коллектор-эмиттер регулирующего транзистора VT3 резко возрастет, напряжение на выходе блока питания упадет почти до нуля, и через цепь короткого замыкания потечет настолько малый ток, что он не причинит вреда деталям блока.

Как только короткое замыкание будет устранено, транзистор VT1 закроется и напряжение на выходе блока восстановится.

2. Детали

В блоке питания использованы самые распространенные детали. Понижающий трансформатор Т1 можно использовать любой, обеспечивающий на вторичной обмотке переменное напряжение 14 – 18 Вольт при токе нагрузки 0,4 – 0,6 Ампер.

В оригинале статьи используется готовый трансформатор от кадровой развертки Советских телевизоров — типа ТВК-110ЛМ.

Диоды VD1 – VD4 могут быть из серии 1N40011N4007. Также подойдут диоды, рассчитанные на обратное напряжение не менее 50 Вольт при токе нагрузки не менее 0,6 Ампер.
Диод VD5 желательно германиевый из серии Д226, Д7 — с любым буквенным индексом.

Электролитический конденсатор любого типа, на напряжение не менее 25 Вольт. Если не будет одного с емкостью 2200 микрофарад, то его можно составить из двух по 1000 микрофарад, или четырех по 500 микрофарад.

Постоянные резисторы используются отечественного МЛТ-0,5, или импортного производства мощностью 0,5 Ватт. Переменный резистор номиналом 5 – 10 кОм.

Транзисторы VT1 и VT2 германиевые — любые из серии МП39 – МП42 с любым буквенным индексом.

Транзистор VT3 – из серии КТ814, КТ816 с любым буквенным индексом. Этот мощный транзистор обязательно устанавливается на радиатор.

Радиатор можно использовать самодельный, сделанный из пластины алюминия толщиной 3 – 5см и размером около 60х60мм.

Стабилитрон VD6 будем подбирать, так как у них идет большой разброс по напряжению стабилизации Uст. Возможно, даже придется составить из двух. Но это уже при наладке.

Вот основные параметры стабилитронов серии Д814 А-Д:

Миллиамперметр используйте такой, какой у Вас есть. Можно использовать индикаторы от старых приемников и магнитофонов. Одним словом – ставьте что есть. А можно даже вообще обойтись без прибора.

На этом хочу закончить. А Вы, если заинтересовала схема, подбирайте детали.В следующей части начнем рисовать и делать печатную плату с нуля, возможно, распаяем на ней детали.
Удачи!

Как собрать блок питания с регуляторами своими руками

Для радиолюбителей, да и вообще современного человека, незаменимой вещью в доме является блок питания (БП), ведь он имеет очень полезную функцию — регулирование напряжения и тока.

Читать также:  Габионы своими руками. Пошаговые фото и видео

При этом мало кто знает, что сделать такой прибор при должном старании и знаниях радиоэлектроники вполне реально своими руками. Любому радиолюбителю, которому нравится возиться дома с электроникой, самодельные лабораторные блоки питания позволят заниматься своим хобби без ограничений. Как раз о том, как своими руками сделать регулируемый тип блок питания расскажет наша статья.

Что нужно знать

Блок питания с регулировкой тока и напряжения в современном доме – необходима вещь. Этот прибор, благодаря своему специальному устройству, может преобразовать напряжение и ток, имеющееся в сети до того уровня, который может потреблять конкретный электронный прибор. Вот примерная схема работы, по которой можно своими руками сделать подобный прибор.

Но готовые БП стоят достаточно дорого, для того чтобы покупать их под конкретные нужды. Поэтому сегодня очень часто преобразователи для напряжения и тока изготавливаются своими руками.

Обратите внимание! Самодельные лабораторные блоки питания могут иметь различные габариты, показатели мощности и прочие характеристики. Все зависит от того, какой именно преобразователь вам нужен и для каких целей.

Профессионалы могут легко сделать мощный блок питания, в то время как новичкам и любителям подойдет для начала простой тип прибора. При этом схема, в зависимости от сложности, может использоваться самая разная.

Что нужно учитывать

Регулируемый блок питания представляет собой универсальный преобразователь, который может использоваться для подключения любой бытовой или вычислительной аппаратуры. Без него ни один домашний прибор не сможет функционировать нормально.
Такой БП состоит из следующих составных частей:

  • трансформатор,
  • преобразователь,
  • индикатор (вольтметр и амперметр).
  • транзисторы и прочие детали, необходимые для создания качественной электрической сети.

Схема, приведенная выше, отражает все компоненты прибора.
Кроме этого, данный тип блока питания должен обладать защитой на сильный и слабый ток. В противном случае любая внештатная ситуация может привести к тому, что преобразователь и подключенный к нему электрический прибор просто перегорит.

К этому результату также может привести неправильная спайка компонентов платы, неправильное подключение или монтаж.
Если вы новичок, то для того чтобы сделать регулируемый тип блока питания своими руками лучше выбирать простой вариант сборки. Одним из простых видов преобразователя является 0-15В БП.

Он имеет защиту от превышения показателя тока в подключенной нагрузке. Схема для его сборки размещена ниже.

Это, так сказать, универсальный тип сборки. Схема здесь доступна для понимания любому человеку, который хотя бы раз держал в руках паяльник. К преимуществам этой схемы можно отнести следующие моменты:

  • она состоит из простых и доступных деталей, которые можно отыскать либо на радиорынке, либо в специализированных магазинах радиоэлектроники,
  • простой тип сборки и дальнейшей настройки,
  • здесь нижний предел для напряжения составляет 0,05 вольт,
  • двухдиапазонная защита для показателя тока (на 0,05 и 1А),
  • обширный диапазон для выходных напряжений,
  • высокая стабильность в функционировании преобразователя.

В этой ситуации с помощью трансформатора напряжение будет обеспечиваться в диапазоне на 3В больше, чем имеется максимальное требуемое напряжение для выхода. Из этого следует, что блок питания, способный регулировать напряжение в пределах до 20В, нуждается в трансформаторе минимум на 23 В.

Обратите внимание! Диодный мост следует выбирать, исходя из показателя максимального тока, который будет ограничиваться имеющейся защитой.

Конденсатор для фильтра 4700мкф позволит чувствительной к помехам по питанию техники не давать фон. Для этого потребуется компенсационный стабилизатор, имеющий коэффициент подавления для пульсаций более 1000.
Теперь, когда с основными аспектами сборки мы разобрались, необходимо обратить внимание на требования.

Требования к прибору

Чтобы создать простой, но одновременно качественный и мощный блок питания с возможностью регулировать напряжение и ток своими руками, необходимо знать, какие требования существуют к такому типу преобразователей.
Эти технические требования выглядят так:

  • регулируемый стабилизированный выход на 3–24 В. При этом нагрузка по току должна составлять минимум 2 А,
  • нерегулируемый выход на 12/24 В. При этом предполагается большая нагрузка по току.

Чтобы выполнить первое требование, следует использовать в работе интегральный стабилизатор. Во втором случае выход необходимо сделать уже после диодного моста, так сказать, в обход стабилизатора.

Приступаем к сборке

После того как вы определились с требованиями, которым должен отвечать ваш постой блок питания регулируемого типа, а также была выбрана подходящая схема, можно начинать саму сборку. Но прежде всего запасемся нужными нам деталями.
Для сборки вам понадобятся:

  • мощный трансформатор. Например, ТС-150–1. Он способен выдавать напряжение в 12 и 24 В,
  • конденсатор. Можно использовать модель на 10000 мкФ 50 В,
  • микросхема для стабилизатора,
  • обвязки,
  • детали схемы (в нашем случае — схема, которая указана выше).

После этого по схеме собираем своими руками регулируемый блок питания в точном соответствии со всеми рекомендациями. Последовательность действий должна быть соблюдена.

Для сборки БП используются следующие детали:

  • германиевые транзисторы (в большинстве своем). Если вы захотите заменить их на более современные кремневые элементы, тогда нижний МП37 обязательно должен остаться германиевым. Здесь используются МП36, МП37, МП38 транзисторы,
  • на транзисторе собирается токоограничительный узел. Он обеспечивает отслеживание падения на резисторе напряжения.
  • стабилитрон Д814. Он определяет регулировку максимального выходного напряжения. На себя он забирает половину от выходного напряжения,

Обратите внимание! Поскольку стабилитрон Д814 отбирает ровно половину напряжения на выходе, то его следует выбирать для создания 0-25В выходного напряжения примерно на 13 В.

  • нижний предел в собранном блоке питания имеет показатель напряжения всего 0,05 В. Такой показатель редкость для более сложных схем сборки преобразователя,
  • стрелочные индикаторы отображают показатели тока и напряжения.

Для размещения всех деталей необходимо выбрать стальной корпус. Он сможет экранировать трансформатор и плату блока питания. В результате вы избежите ситуации появления различного рода помех для чувствительной аппаратуры.

Получившийся преобразователь можно спокойно использовать для питания любой бытовой аппаратуры, а также экспериментов и проверок, проводимых в домашней лаборатории. Также такой прибор можно применять для оценки работоспособности автомобильного генератора.

Заключение

Используя простые схемы для сборки регулируемого типа блока питания, вы сможете набить руку и в дальнейшем делать своими руками более сложные модели.

Не стоит брать на себя непосильный труд, так как в конечном итоге вы можете не получить желаемый результат, а самодельный преобразователь будет работать неэффективно, что негативным образом может сказаться как на самом приборе, так и на функциональности электроаппаратуры, подключенной к нему.

Если же все сделать правильно, то на выходе вы получите отличный блок питания с регулировкой напряжения для своей домашней лаборатории или других бытовых ситуаций.

Сборка блока питания с регулировкой тока/напряжения своими руками

Вот очередная версия лабораторного блока питания с напряжением от 0 до 30 В и регулировкой потребляемого тока 0-2 А, что всегда бывает полезно, когда используется БП для настройки самодельных схем или когда они неизвестные приборы запускаются в первый раз.

Схема ИП с регулировкой тока и напряжения

Сама схема питания — это популярный комплект из таких элементов:

  1. Сам регулируемый стабилизатор, в котором заменен T1 — BC337 на BD139, T2 — BD243 на BD911
  2. D1-D4 — диоды 1N4001 заменены на RL-207
  3. C1 — 1000 мкФ / 40 В заменен на 4700 мкФ / 50 В
  4. D6, D7 — 1N4148 на 1N4001

У используемого трансформатора есть напряжения: 25 В, 2 А и 12 В, которое полезно для управления вентилятором, охлаждающим радиатор и силовые диоды на панели. Для этого была создана небольшая плата с мостовым выпрямителем, фильтрующими конденсаторами и стабилизатором LM7812 (с радиатором).

Внутри корпуса лабораторного источника питания размещены трансформатор, плата самого регулируемого блока питания, платы стабилизаторов — 12 В и 24 В, радиатор с охлаждающим вентилятором (запускается при 50 С).

На передней части корпуса установлены выключатель, три светодиода, информирующих о состоянии блока питания (сеть 220 В, включение вентилятора и защита — ограничение тока или короткое замыкание), синие и красные LED дисплеи с наклеенной на них затемняющей пленкой. Рядом с дисплеями расположены регулирующие потенциометры, а справа выводы питания. На задней части корпуса имеется разъем для сети, предохранитель и охлаждающий вентилятор 60?60 мм.

Полезное: Cхема высоковольтного преобразователя напряжения

Что касается индикаторных дисплеев, они показывают:

Источник питания получился реально удобный и надёжный. Вся сборка заняла несколько дней. Что касается охлаждения, оно включается только при высокой нагрузке и то на короткое время, примерно на пару минут.

С этим БП удобно работать даже при слабом освещении, так как яркости индикаторов хватает с головой. Если хотите повысить ток до 3-4 ампера, выбирайте трансформатор по-мощнее и транзисторы регулятора, с хорошим запасам по току. Ещё пару неплохих схем источников питания смотрите по ссылкам:

Лучший самодельный блок питания

Доброго времени суток форумчане и гости сайта Радиосхемы! Желая собрать приличный, но не слишком дорогой и крутой блок питания, так чтоб в нём всё было и ничего это по деньгам не стоило, перебрал десятки вариантов.

В итоге выбрал лучшую, на мой взгляд, схему с регулировкой тока и напряжения, которая состоит всего из пяти транзисторов не считая пары десятков резисторов и конденсаторов. Тем не менее работает она надёжно и имеет высокую повторяемость.

Эта схема уже рассматривалась на сайте, но с помощью коллег удалось несколько улучшить её.

Я собрал эту схему в первоначальном виде и столкнулся с одним неприятным моментом. При регулировке тока не могу выставить 0.1 А — минимум 1.5 А при R6 0.22 Ом. Когда увеличил сопротивление R6 до 1.2 Ом — ток при коротком замыкании получился минимум 0.5 А. Но теперь R6 стал быстро и сильно нагреваться.

Тогда задействовал небольшую доработку и получил регулировку тока намного более шире. Примерно от 16 мА до максимума. Также можно сделать от 120 мА если конец резистора R8 перекинуть в базу Т4.

Суть в том, что до падения напряжения резистора добавляется падения перехода Б-Э и это дополнительное напряжение позволяет раньше открыть Т5, и как следствие — раньше ограничить ток.

Рекомендуем такой вариант схемы с мультисима. Добавлен резистор (R9 100 Ом) в базу Т5 (Q5) для ограничения тока при крайнем левом положении резистора R8 (470 Ом). Регулирует от 10 мА до максимума.

На базе этого предложения провёл успешные испытания и в итоге получил простой лабораторный БП. Выкладываю фото моего лабораторного блока питания с тремя выходами, где:

Также помимо платы регулировки выходного напряжения устройство было дополнено платой фильтра питания с блоком предохранителей. Что получилось в итоге — смотрите далее:

Отдельная благодарность за улучшение схемы — Rentern. Сборка, корпус, испытания — aledim.

Обсудить статью Лучший самодельный блок питания

Простой БП своими руками

Вот и собрано очередное устройство, теперь встаёт вопрос от чего его питать? Батарейки? Аккумуляторы? Нет! Блок питания, о нём и пойдёт речь.

Схема его очень проста и надёжна, она имеет защиту от КЗ, плавную регулировку выходного напряжения.
На диодном мосте и конденсаторе C2 собран выпрямитель, цепь C1 VD1 R3 стабилизатор опорного напряжения, цепь R4 VT1 VT2 усилитель тока для силового транзистора VT3, защита собрана на транзисторе VT4 и R2, резистором R1 выполняется регулировка.

Трансформатор я брал из старого зарядного от шуруповерта , на выходе я получил 16В 2А
Что касается диодного моста (минимум на 3 ампера), брал его из старого блока ATX также как и электролиты, стабилитрон, резисторы.

Стабилитрон использовал на 13В, но подойдёт и советский Д814Д.
Транзисторы были взяты из старого советского телевизора, транзисторы VT2, VT3 можно заменить на один составной например КТ827.

Резистор R2 проволочный мощностью 7 Ватт и R1 (переменный) я брал нихромовый, для регулировки без скачков, но в его отсутствии можно поставить обычный.

Состоит из двух частей: на первой собран стабилизатор и защита и, а на второй силовая часть.

Все детали монтируются на основной плате (кроме силовых транзисторов), на вторую плату припаяны транзисторы VT2, VT3 их крепим на радиатор с использованием термопасты, корпуса (коллекторы) изолировать ненужно .

Схема повторялась много раз в настройке не нуждается. Фотографии двух блоков приведены ниже С большим радиатором 2А и маленьким 0,6А.

Индикация
Вольтметр: для него нам нужен резистор на 10к и переменный на 4,7к и индикатор я брал м68501 но можно и другой. Из резисторов соберём делитель резистор на 10к не даст головке сгореть, а резистором на 4,7к выставим максимальное отклонение стрелки.

После того как делитель собран и индикация работает нужно от градуировать его , для этого вскрываем индикатор и наклеиваем на старую шкалу чистую бумагу и вырезаем по контуру, удобнее всего обрезать бумагу лезвием.

Когда все приклеено и высохло, подключаем мультиметр параллельно нашему индикатору, и всё это к блоку питания, отмечаем 0 и увеличиваем напряжение до вольта отмечаем и т.д.

Амперметр: для него берём резистор на 0,27 ома . и переменный на 50к, схема подключения ниже, резистором на 50к выставим максимальное отклонение стрелки.

Градуировка такая-же только изменяется подключение см ниже в качестве нагрузки идеально подходит галогеновая лампочка на 12 в.

Понравилась статья? Поделиться с друзьями: